Monatshefte für Chemie 107, 1221—1225 (1976) © by Springer-Verlag 1976

Thin Layer Chromatographic Studies of Anils II. Separation, Identification and Determination

 $\mathbf{B}\mathbf{y}$

R. K. Upadhyay*, Rashmi R. Bansal

Department of Chemistry, N.R.E.C. College, Khurja, India

and

Usha Vajpai

Department of Chemistry, T.R.G., Degree College, Aligarh, U.P., India

(Received November 18, 1975)

Thin layer chromatographic behaviour of ten anils was studied on silica gel adsorbent mixed with starch binder with ten solvent systems. Simultaneous separation, identification and determination of ternary mixtures of isomers was stressed. The R_F increasing order was found to be dependent on the solvent and independent of the degree of saturation of the chamber. The correlations of R_F with λ_{\max} and ν (C=O) of isomers were established and used in their identification. Six anils were separated in methanol—benzene (1:1).

A fairly good number of primary aromatic amines¹⁻³ and carbonyl compounds⁴⁻⁶ has been studied by thin layer chromatography (*TLC*) and a few anils, the condensation products of α -ketoaldehydes with primary aromatic amines have been studied for the first time by *Upadhyay* et al.⁷. Separation of isomers has also been a long persisting problem and only a few attempts^{8, 9} have been successfully made so far. In the continuation of our early investigations the present communication on the separation of many anils has shown that the *TLC* method is successful.

The relationship between the stretching frequencies of the carbonyl group (> C=O) of isomeric anils with their R_F values in different solvents were studied and used in their identification. At λ_{\max} values, corresponding to > C=O group of the anils, the optical density of the elutes were measured to estimate quantitatively the mixture components.

^{*} Postal address: 57, Chhatta Street, Khurja, U.P. (India).

Experimental

Synthesis and Characterisation of Anils

p-Diethylaminoanil was prepared in alcoholic medium at room temperature and dried at reduced pressure. The other anils were synthesized⁷, ¹¹ by condensing the appropriate weights of the corresponding amine and 3-phenanthryl glyoxal in acetic acid.

Anil	Colour	М.Р., °С	Yield, %	C= ni	λ _{max} va = 0 m, P	$egin{array}{c = \mathbf{N} \\ \mathbf{nm,} \\ \mathbf{S} \end{array}$		
$ \begin{array}{l} 1 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{NO}_{2}\left(o\right) \\ 2 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{NO}_{2}\left(m\right)^{11} \\ 3 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{NO}_{2}\left(p\right) \\ 4 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{COOH}\left(o\right) \\ 5 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{COOH}\left(m\right) \\ 6 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{COOH}\left(p\right) \\ 7 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{NE}t_{2} \\ 8 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{NE}t_{2} \\ 8 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{CI}\left(p\right) \\ 9 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{Br}\left(p\right) \\ 10 \mathrm{R} = \mathrm{NC}_{6}\mathrm{H}_{4} - \mathrm{I}\left(p\right) \\ \end{array} $	Yellow Buff Yellow Buff Orange Dark brown Orange Yellow Violet green	$128-129 \\ 103-104 \\ 115-116 \\ 202 \\ De- \\ compose \\ 192 \\ 95 \\ 135 \\ 217-218 \\ 145 \\ 145 \\ 145 \\ 103-104$	72 76 69 70 70 70 76 90 68 80 92	293 297 295 295 296 298 300 303 300 300	320 321 D 319 318 352 360 350 352	277 267 270 278 260 269 285 303 300 300	1681 1688 1684 1695 1724 1739 1667 1730 1695 1667	1618 1629 1667 1613 1613 1667 1613 1613 1613 1600

Table 1. Characteristics of Anils*

COCH

D = diffused, P = Primary, S = Secondary.

* Formulae checked by N-determination.

The anils were recrystallized from chloroform.

Ultraviolet spectra were recorded on G 2400 DU Spectrophotometer in chloroform and the infrared spectra on a Perkin-Elmer infracord in KBr medium. Characteristics of the anils are noted in Table 1.

Plate Preparation and Development

Silica gel (N.C.L., Poona, India) having been freed from iron and chloride ions and mixed with starch (E. Merck, Darmstadt, GFR) as binder (19:1, w/w) was used for coating the glass plates. An aqueous slurry was used to prepare the layers of 0.10 cm thickness, with a home-built apparatus¹⁰. The coated plates were dried at ≈ 100 °C for 2 hours in an oven. Sample solutions were prepared in acetone and applied with fine capillaries. The R_F values were determined on 18×3 cm glass strips, and the results were checked using 18×10 cm glass plates. The R_F values (Table 2) were found to be essentially independent of plate size.

The plates were developed in glass chambers with ground-in-lids by ascending technique. The time of development given in Table 2 is for a distance of 10-11 cm travelled by the solvent front. The developed plates were air dried and spots were clearly discernible in day light and their colours remained stable for over six months.

Results and Discussion

Benzene—methanol (1:1, v/v) showed the highest resolving capability in which the separation of six compounds (from m-nitroaniline, m-aminobenzoic acid, p-diethylaminoaniline, p-chloroaniline, p-bromoaniline and p-iodoaniline) was promising. Abnormally high R_F values in mixtures (benzene—alcohol: 1:1, v/v), greater than that of benzene or alcohol, may be attributed¹² to the interaction of the carbonyl group of the anils with alcohol in presence of benzene (inert solvent) which disrupted the association among alcohol molecules as a consequence of increased protonation or pH led to the formation of hemiacetals or ketals. Azeotropic properties of the mixtures may also account for this abnormality.

Inspite of the dominant role played by the solvent the chromatographic studies of the ternary isomeric mixtures of the anils gave interesting results, each mixture giving a particular order of the R_F values.

Anils from o-, m- and p-Nitroanilines

The mixture was best resolved in chloroform. The resolving capability of chloroform mixed with various proportions of benzene was tested. Even 20% of chloroform in benzene was found sufficient to give good separations. However, small proportions of chloroform were effective only for the separation of binary mixtures. Toluene was also used to resolve the mixture although it was less effective. For oxygen containing solvents, hydrocarbons and chloroform, different R_F increasing orders, meta-, ortho-, para-; para-, meta-, ortho- and ortho-, para-, meta- were obtained respectively. Alcohol—benzene (1:1, v/v) azeotropic mixtures behaved like chloroform in establishing the R_F orders whereas butanol—acetic acid (3:2, v/v) azeotropic mixture showed the similar behaviour as hydrocarbons in establishing the R_F order.

Anils from o-, m- and p-Aminobenzoic Acids

Maximum separation was achieved in butanol—acetic acid (3:2, v/v). For oxygen containing solvents the R_F values increased in the

						1 0010 2
	Spot Colour	$Et_2\mathrm{O}$	MeOH	n-BuOH	C_6H_6	C_7H_8
1	Canary yellow	0.81	0.73	0.93	0.40	0.39
2	Yellow	0.80	0.65	0.83	0.40	0.34
3	Yellow	0.90	0.74	0.94	0.29	0.10
4	Yellow	0.97	0.85	0.74	0.04	0.03
5	Yellow	0.99	0.88	0.98	0.00	0.00
6	Light brown	0.99	0.75	0.99	0.00	0.00
7	Light orange	0.97	0.97	0.99	0.40	0.00
8	Orangish yellow	0.99	0.75	0.99	0.56	0.44
9	Yellow	0.99	0.80	0.96	0.59	0.44
10	Yellow	0.96	0.81	0.99	0.00	0.00
Deve	lopment time	$^{3}\!/_{4}$ h	1 h	$2 \frac{1}{2} h$	$\frac{1}{2}$ h	$\frac{1}{2}$ h

order ortho-, meta-, para- which reversed for the chloroform, hydrocarbons and their mixtures. In the resolving solvent the order of R_F was p < o < m.

Identification of Isomeric Anils

An interesting feature of the studies was the correlation of the R_F with infrared and ultraviolet results. The stretching frequencies (v) and λ_{\max} values corresponding to the characteristic carbonyl group (> C=O) of the anils which is highly sensitive to the nature and position of the substituent, were correlated with the R_F values in different solvents. Both, the ν (C=O) and λ_{\max} of the isomeric anils derived from nitroanilines and aminobenzoic acids fell in the orders o and <math>o < m < p respectively. The correlations of ν (C=O) and λ_{\max} with R_F values in the solvents giving best resolution of the isomers, were found very useful in their identification.

Quantitative Estimation

The correlation of λ_{\max} with R_F in the resolving solvent was found significant in the determination of isomeric anils. Mixtures were resolved and eluted and optical density measurements were made at the λ_{\max} of the components to deduce their concentrations from standard calibration curves.

Acknowledgements

Suggestions from Prof. J. P. Vajpai, D.S. College, Aligarh, and Dr. S. D. Verma, D.A.V. College, Kanpur, are gratefully acknowledged.

Table 2

CHCl ₃	MeOH—C ₆ H ₆ n (1:1)	(1:1)	(3:2)	(1:4)
0.55	0.92	0.96	0.95	0.36
0.78	0.95	0.99	0.91	0.30
0.70	0.94	0.99	0.91	0.15
0.00	0.93	0.99	0.89	0.03
0.00	0.84	0.99	0.99	0.00
0.00	0.82	0.34	0.81	0.00
0.00	0.66	0.99	0.99	0.00
0.76	0.23	0.98	0.99	0.61
0.97	0.74	0.99	0.99	0.00
0.51	0.47	0.98	0.99	0.00
1 h	$1\frac{1}{2}$ h	$1\frac{3}{4}$ h	3 h	1 h

We are also indebted to Mr. J. K. Agrawal, N.R.E.C. College, Khurja, for his kind help. We also wish to extend our thanks to Dr. P. C. Gupta, Principal, N.R.E.C. College, Khurja, U.P. (India), for providing the facilities.

References

- ¹ C.-T. Chen and Y. Hsuan Yuan, Bull. Inst. Chem. Acad. Sinica No. 13, 65 (1967).
- ² E. A. Mistryukov, J. Chromatogr. 9, 314 (1962).
- ³ A. Jart and A. J. Bigler, J. Chromatogr. 29, 255 (1967).
- ⁴ M. M. Buzlanova and V. F. Stepanovskaya, Zh. Analit. Khim. 20, 859 (1965).
- ⁵ J. Davidek, Nahrung 10, 713, 717 (1966).
- ⁶ M. M. Buzlanova and V. F. Stepanovskaya, Metody Kontr. Khim. Sostava Neorg. Org. Soedin. **129** (1966).
- ⁷ R. K. Upadhyay, V. P. Singh, and Usha Vajpai, J. Chromatogr. 95, 494 (1974).
- ⁸ S. Marcinbiewiez and J. Green, J. Chromatogr. 10, 372 (1963).
- ⁹ K. Berei and L. Basaros, J. Chromatogr. 26, 301 (1967).
- ¹⁰ E. Stahl, Thin Layer Chromatography, 2nd ed., p. 56. Berlin-Heidelberg-New York: Springer. 1966.
- ¹¹ R. K. Upadhyay and S. S. Misra, An. Conv. Indian Chem. Soc. (1975).
- ¹² D.J. Cram and G.S. Hammond, Organic Chemistry, 2nd ed., p. 295 to 297. McGraw-Hill.

Correspondence and reprints: Dr. R. K. Upadhyay Department of Chemistry N.R.E.C, College IND-203131 Khurja India